Leetcode 28.找出字符串中第一个匹配项的下标

题目要求

  • 给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回 -1 。

示例 1:
输入:haystack = “sadbutsad”, needle = “sad”
输出:0
解释:“sad” 在下标 0 和 6 处匹配。
第一个匹配项的下标是 0 ,所以返回 0 。

示例 2:
输入:haystack = “leetcode”, needle = “leeto”
输出:-1
解释:“leeto” 没有在 “leetcode” 中出现,所以返回 -1 。

提交

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public int strStr(String haystack, String needle) {
if (needle.isEmpty() || haystack.isEmpty()) {
return -1;
}
int m = haystack.length();
int n = needle.length();
int i = 0;
//外层循环控制从haystack中开始比对的位置
for (i = 0; i <= m - n; i++) {
int j;
//内层循环控制整个needle字符串的比对
for (j = 0; j < n; j++) {
if (haystack.charAt(i + j) != needle.charAt(j)) {
break;
}
}
//如果全部比对完成则j==n,i即为所求位置
if (j == n) {
return i;
}
}
return -1;
}
}

官方答案

方法一:暴力匹配

思路及算法:
我们可以让字符串 needle 与字符串 haystack 的所有长度为 m 的子串均匹配一次。
为了减少不必要的匹配,我们每次匹配失败即立刻停止当前子串的匹配,对下一个子串继续匹配。如果当前子串匹配成功,我们返回当前子串的开始位置即可。如果所有子串都匹配失败,则返回 −1。
复杂度分析:

  • 时间复杂度:O(n×m),其中 n 是字符串 haystack 的长度,m 是字符串 needle 的长度。最坏情况下我们需要将字符串 needle 与字符串 haystack 的所有长度为 m 的子串均匹配一次。
  • 空间复杂度:O(1)。我们只需要常数的空间保存若干变量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public int strStr(String haystack, String needle) {
int n = haystack.length(), m = needle.length();
for (int i = 0; i + m <= n; i++) {
boolean flag = true;
for (int j = 0; j < m; j++) {
if (haystack.charAt(i + j) != needle.charAt(j)) {
flag = false;
break;
}
}
if (flag) {
return i;
}
}
return -1;
}
}

方法二:Knuth-Morris-Pratt 算法

思路及算法:
Knuth-Morris-Pratt 算法,简称 KMP 算法,由 Donald Knuth、James H. Morris 和 Vaughan Pratt 三人于 1977 年联合发表。
记字符串 haystack 的长度为 n,字符串 needle 的长度为 m。
我们记字符串 str=needle+#+haystack,即将字符串 needle 和 haystack 进行拼接,并用不存在于两串中的特殊字符 # 将两串隔开,然后我们对字符串 str 求前缀函数。
因为特殊字符 # 的存在,字符串 str 中 haystack 部分的前缀函数所对应的真前缀必定落在字符串 needle 部分,真后缀必定落在字符串 haystack 部分。当 haystack 部分的前缀函数值为 m 时,我们就找到了一次字符串 needle 在字符串 haystack 中的出现(因为此时真前缀恰为字符串 needle)。
实现时,我们可以进行一定的优化,包括:
我们无需显式地创建字符串 str。
为了节约空间,我们只需要顺次遍历字符串 needle、特殊字符 # 和字符串 haystack 即可。
也无需显式地保存所有前缀函数的结果,而只需要保存字符串 needle 部分的前缀函数即可。
特殊字符 # 的前缀函数必定为 0,且易知 π(i)≤m(真前缀不可能包含特殊字符 #)。
这样我们计算 π(i) 时,j=π(π(π(…)−1)−1) 的所有的取值中仅有 π(i−1) 的下标可能大于等于 m。我们只需要保存前一个位置的前缀函数,其它的 j 的取值将全部为字符串 needle 部分的前缀函数。
我们也无需特别处理特殊字符 #,只需要注意处理字符串 haystack 的第一个位置对应的前缀函数时,直接设定 j 的初值为 0 即可。
这样我们可以将代码实现分为两部分:

第一部分是求 needle 部分的前缀函数,我们需要保留这部分的前缀函数值。
第二部分是求 haystack 部分的前缀函数,我们无需保留这部分的前缀函数值,只需要用一个变量记录上一个位置的前缀函数值即可。当某个位置的前缀函数值等于 m 时,说明我们就找到了一次字符串 needle 在字符串 haystack 中的出现(因为此时真前缀恰为字符串 needle,真后缀为以当前位置为结束位置的字符串 haystack 的子串),我们计算出起始位置,将其返回即可。

复杂度分析:

  • 时间复杂度:O(n+m),其中 n 是字符串 haystack 的长度,m 是字符串 needle 的长度。我们至多需要遍历两字符串一次。
  • 空间复杂度:O(m),其中 m 是字符串 needle 的长度。我们只需要保存字符串 needle 的前缀函数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public int strStr(String haystack, String needle) {
int n = haystack.length(), m = needle.length();
if (m == 0) {
return 0;
}
int[] pi = new int[m];
for (int i = 1, j = 0; i < m; i++) {
while (j > 0 && needle.charAt(i) != needle.charAt(j)) {
j = pi[j - 1];
}
if (needle.charAt(i) == needle.charAt(j)) {
j++;
}
pi[i] = j;
}
for (int i = 0, j = 0; i < n; i++) {
while (j > 0 && haystack.charAt(i) != needle.charAt(j)) {
j = pi[j - 1];
}
if (haystack.charAt(i) == needle.charAt(j)) {
j++;
}
if (j == m) {
return i - m + 1;
}
}
return -1;
}
}